Package: marqLevAlg 2.0.8

marqLevAlg: A Parallelized General-Purpose Optimization Based on Marquardt-Levenberg Algorithm

This algorithm provides a numerical solution to the problem of unconstrained local minimization (or maximization). It is particularly suited for complex problems and more efficient than the Gauss-Newton-like algorithm when starting from points very far from the final minimum (or maximum). Each iteration is parallelized and convergence relies on a stringent stopping criterion based on the first and second derivatives. See Philipps et al, 2021 <doi:10.32614/RJ-2021-089>.

Authors:Viviane Philipps, Cecile Proust-Lima, Melanie Prague, Boris Hejblum, Daniel Commenges, Amadou Diakite

marqLevAlg_2.0.8.tar.gz
marqLevAlg_2.0.8.zip(r-4.5)marqLevAlg_2.0.8.zip(r-4.4)marqLevAlg_2.0.8.zip(r-4.3)
marqLevAlg_2.0.8.tgz(r-4.4-x86_64)marqLevAlg_2.0.8.tgz(r-4.4-arm64)marqLevAlg_2.0.8.tgz(r-4.3-x86_64)marqLevAlg_2.0.8.tgz(r-4.3-arm64)
marqLevAlg_2.0.8.tar.gz(r-4.5-noble)marqLevAlg_2.0.8.tar.gz(r-4.4-noble)
marqLevAlg_2.0.8.tgz(r-4.4-emscripten)marqLevAlg_2.0.8.tgz(r-4.3-emscripten)
marqLevAlg.pdf |marqLevAlg.html
marqLevAlg/json (API)

# Install 'marqLevAlg' in R:
install.packages('marqLevAlg', repos = c('https://vivianephilipps.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/vivianephilipps/marqlevalgparallel/issues

Datasets:

On CRAN:

6.63 score 7 stars 11 packages 15 scripts 2.5k downloads 6 exports 4 dependencies

Last updated 1 years agofrom:05f7760246. Checks:OK: 4 NOTE: 5. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 15 2024
R-4.5-win-x86_64NOTENov 15 2024
R-4.5-linux-x86_64NOTENov 15 2024
R-4.4-win-x86_64NOTENov 15 2024
R-4.4-mac-x86_64NOTENov 15 2024
R-4.4-mac-aarch64NOTENov 15 2024
R-4.3-win-x86_64OKNov 15 2024
R-4.3-mac-x86_64OKNov 15 2024
R-4.3-mac-aarch64OKNov 15 2024

Exports:derivaderiva_gradgradLMMloglikLMMmarqLevAlgmla

Dependencies:codetoolsdoParallelforeachiterators

Robust and Efficient Optimization Using a Marquardt-Levenberg Algorithm with R Package marqLevAlg

Rendered frommla.Rmdusingknitr::rmarkdownon Nov 15 2024.

Last update: 2022-07-08
Started: 2020-09-10