Package: marqLevAlg 2.0.8
marqLevAlg: A Parallelized General-Purpose Optimization Based on Marquardt-Levenberg Algorithm
This algorithm provides a numerical solution to the problem of unconstrained local minimization (or maximization). It is particularly suited for complex problems and more efficient than the Gauss-Newton-like algorithm when starting from points very far from the final minimum (or maximum). Each iteration is parallelized and convergence relies on a stringent stopping criterion based on the first and second derivatives. See Philipps et al, 2021 <doi:10.32614/RJ-2021-089>.
Authors:
marqLevAlg_2.0.8.tar.gz
marqLevAlg_2.0.8.zip(r-4.5)marqLevAlg_2.0.8.zip(r-4.4)marqLevAlg_2.0.8.zip(r-4.3)
marqLevAlg_2.0.8.tgz(r-4.4-x86_64)marqLevAlg_2.0.8.tgz(r-4.4-arm64)marqLevAlg_2.0.8.tgz(r-4.3-x86_64)marqLevAlg_2.0.8.tgz(r-4.3-arm64)
marqLevAlg_2.0.8.tar.gz(r-4.5-noble)marqLevAlg_2.0.8.tar.gz(r-4.4-noble)
marqLevAlg_2.0.8.tgz(r-4.4-emscripten)marqLevAlg_2.0.8.tgz(r-4.3-emscripten)
marqLevAlg.pdf |marqLevAlg.html✨
marqLevAlg/json (API)
# Install 'marqLevAlg' in R: |
install.packages('marqLevAlg', repos = c('https://vivianephilipps.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/vivianephilipps/marqlevalgparallel/issues
- dataEx - Simulated dataset
Last updated 1 years agofrom:05f7760246. Checks:OK: 4 NOTE: 5. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 15 2024 |
R-4.5-win-x86_64 | NOTE | Nov 15 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 15 2024 |
R-4.4-win-x86_64 | NOTE | Nov 15 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 15 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 15 2024 |
R-4.3-win-x86_64 | OK | Nov 15 2024 |
R-4.3-mac-x86_64 | OK | Nov 15 2024 |
R-4.3-mac-aarch64 | OK | Nov 15 2024 |
Exports:derivaderiva_gradgradLMMloglikLMMmarqLevAlgmla
Dependencies:codetoolsdoParallelforeachiterators
Readme and manuals
Help Manual
Help page | Topics |
---|---|
A parallelized general-purpose optimization based on Marquardt-Levenberg algorithm | marqLevAlg-package |
Simulated dataset | dataEx |
Numerical derivatives | deriva |
Numerical derivatives of the gradient function | deriva_grad |
Gradient of the log-likelihood of a linear mixed model with random intercept | gradLMM |
Log-likelihood of a linear mixed model with random intercept | loglikLMM |
A parallelized general-purpose optimization based on Marquardt-Levenberg algorithm | marqLevAlg mla |
Summary of a 'marqLevAlg' object | print.marqLevAlg |
Summary of optimization | summary.marqLevAlg |